Evolution Semigroups in Supersonic Flow-Plate Interactions
نویسندگان
چکیده
We consider the well-posedness of a model for a flow-structure interaction. This model describes the dynamics of an elastic flexible plate with clamped boundary conditions immersed in a supersonic flow. A perturbed wave equation describes the flow potential. The plate’s out-of-plane displacement can be modeled by various nonlinear plate equations (including von Karman and Berger). Supersonic regimes corresponding to the flow provide for new mathematical challenge that is related to the loss of ellipticity in a stationary dynamics. This difficulty is present also in the linear model. We show that the linearized model is well-posed on the state space (as given by finite energy considerations) and generates a strongly continuous semigroup. We make use of these results along with sharp regularity of Airy’s stress function (obtained by compensated compactness method) to conclude global-in-time well-posedness for the fully nonlinear model. The proof of generation has two novel features, namely: (1) we introduce a new flow potential velocity-type variable which makes it possible to cover both subsonic and supersonic cases, and to split the dynamics generating operator into a skew-adjoint component and a perturbation acting outside of the state space. Performing semigroup analysis also requires a nontrivial approximation of the domain of the generator. The latter is due to the loss of ellipticity. And (2) we make critical use of hidden trace regularity for the flow component of the model (in the abstract setup for the semigroup problem) which allows us to develop a fixed point argument and eventually conclude well-posedness. This well-posedness result for supersonic flows (in the absence of regularizing rotational inertia) has been hereto open. The use of semigroup methods to obtain well-posedness opens this model to long-time behavior considerations. Key terms: flow-structure interaction, nonlinear plate, supersonic and subsonic flows, nonlinear semigroups, well-posedness, dynamical systems.
منابع مشابه
Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملTransonic and Supersonic Overtaking of a Projectile Preceding a Shock Wave
In this paper, two-dimensional and axisymmetric, time dependent transonic and supersonic flows over a projectile overtaking a moving shock wave are considered. The flow is simulated numerically by solving full time averaged Navier-Stokes equations. The equations are linearized by Newton approach. The roe’s flux splitting method, second order central difference scheme for the diffusion terms, an...
متن کاملNonlinear Models for Evolution of Disturbances on the Supersonic Boundary Layer
Over the last decade the nonlinear interaction of disturbances in supersonic boundary layers has been extensively investigated. It has become possible due to accumulated experience in theoretical and experimental studies of nonlinear disturbance evolution in subsonic flows. In the case of compressible gas flows, especially at supersonic velocities, the theoretical researches of nonlinear evolut...
متن کاملReceptivity of a supersonic boundary layer over a flat plate . Part 1 . Wave structures and interactions
This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their mutual resonant interactions. The numerica...
متن کامل